We st Prove Theorem 4.5 \& Therren 4.6. on roots. (Filler's notes).
$g=k \otimes \mathbb{C} \quad k$ is a Semi-Sinple compact Lie algetic. (we do not need this for many arguements below. Namely holds for general is the maximal Abelion algebra (corresponple Lie algebra)
η is called a (artan sub-algabre.
$\left[\begin{array}{ll}\text { satisfies two properties (i) maximum Abelian } \\ \text { (ii) } \quad \operatorname{cod} \\ H\end{array}\right]$

If η^{\prime} is also Abelia,,$\eta \subset \eta^{\prime} \Rightarrow \forall x+i ץ \in \eta^{\prime} \quad[t, x+i \gamma]=[t, x]$
(1) $\Rightarrow x, y, \in t \Rightarrow \eta^{\prime}=\eta$ by definition. $+i[t, r]$

Theorem 4.5 Let Δ be the set of roots. Then
(a) $\quad v=\eta \Theta \underset{\alpha \in \Delta}{ } g_{\alpha} \quad g_{0}=\eta_{\text {sine if }} x$ satisfies $\xi_{\alpha}:=\left\{x \mid \operatorname{col}_{H}(x)=\alpha(H) x\right\}$ $\alpha \in \Delta$ since if x satisfies s Namely eigen-spice

(c) $\{\alpha \mid \alpha \in \Delta\}$ spans η^{*}
(d) If $\alpha, \beta \in \Delta \nu\left[j, \alpha+\beta \neq 0, \quad B\left(g_{\alpha}, g_{\beta}\right)=0\right.$ $\left\{\begin{array}{l}g_{\alpha}=0 \text { if, there is } \\ N_{0} \text { linear function } \\ \alpha(H) \text { satisfies }\end{array}\right.$ $\left\{\begin{array}{c}\alpha(H) \text { satisfies } \\ -0^{x}+\text { the condition. } \\ \text { only finite many }\end{array}\right.$ Only finite many
such $\alpha(H)$, with Such $\alpha(H)$, with
$\alpha(H) \neq 0$
(e) $\alpha \in \Delta \Rightarrow-\alpha \in \Delta$
(f) $\left.B\right|_{\eta}$ is non-degenerate.

Pf: (a) By the fact that one can simultaneously diagolinalize all $\operatorname{cod}_{H}: g \rightarrow g$ with $H \in \eta \Rightarrow$
$\exists \quad \alpha_{1} \cdots \alpha_{n}$ such that $\operatorname{ad}_{H}\left(X_{k}\right)=\alpha_{k}(H) X_{k}$
Some of them are ger o functional the corresponding $\operatorname{span}\left\{x_{k}\right\}$ $=\eta$.

The reason is: (i) $\eta \subset \operatorname{span}\left\{x_{k} \quad \operatorname{ad} d_{H}\left(x_{k}\right)=0\right\}$
(ii) If X satisfies $[H, X]=0 \quad \forall H \in \eta$ $x=z+$ Fwiw has $z, w \in t$ hence $x \in \eta$.
q_{α} now are collections of eigenvectors ($\&$ span) of nonzero eigenvalues. $\left.\quad \xi=\eta \oplus \sum_{\alpha \in \Delta}\right\}_{\alpha}$ follows
by the definition of of \& $\& \Delta$
(b)

$$
\begin{aligned}
& X \in g_{\alpha} \quad Y \in g_{\beta} \\
\Rightarrow \quad[H, X] & =\alpha(H) X \quad \forall H \\
\quad[H, Y] & =\beta(H) Y \\
{[H,[X, Y]] } & =-[X,[\underbrace{Y} H]]-[Y,[\underbrace{H}, X]] \\
& =[X, Y] \beta(H)-\alpha(H)[Y, X]=(\alpha(H)+\beta(H)[X, Y]
\end{aligned}
$$

Hence the result.
(c) If $\{\alpha(H)\}_{\alpha \in \Delta}$ does not span $\eta^{*} \Rightarrow \underset{\alpha(H)=0}{\exists} \boldsymbol{l l} \in \eta^{\prime}$ such that $\alpha(H)=0, \forall H \in \eta$
This implies $\forall Y \in q \quad Y=Z+\sum X_{\alpha i} \quad X_{\alpha i} \in \mathcal{q}_{\alpha i}$

$$
\begin{aligned}
& \Rightarrow \quad \operatorname{ad}_{H}(Y)=\sum_{i} \operatorname{ad}_{H}\left(X_{\alpha_{i}}\right)=\alpha_{i}(H) X_{U_{0}}=0 \\
& \Rightarrow H \in z(Y) .
\end{aligned}
$$

(d) $\forall q_{\gamma} \& z \in g_{\gamma} \quad$ Proof 2:

Proof l:

$$
a d_{x} \operatorname{ad}_{j}(z) \in g_{\alpha+\beta+\gamma}
$$

Hence if $\alpha+\beta \neq 0 \Rightarrow g_{\alpha+\beta+\gamma} \neq g_{\gamma}$ proofs. $a d_{X_{\alpha}} \cdot a d_{X_{\beta}}$ is nilpotent by (b)

For $z \in \eta \quad \quad a d_{Y}(z)=-\beta(z) Y$

$$
\Rightarrow \quad a_{X} a d_{Y}(z)=-\beta(z)[x, Y] \in g_{\alpha+\beta} \neq \eta
$$

Could be zer if $\alpha+\beta \notin \Delta$.
$\Rightarrow \quad \operatorname{tr}\left(\operatorname{ad}_{x}\right.$ ady $)=0$, ky the chfinition.
(e) If $-\alpha \notin \Delta \Rightarrow \forall \beta \neq-\alpha, G_{\beta}$ is orthogonal to g_{α} wr.t B
$\Rightarrow q_{r} \quad r \in A$ all orthogonal to $x \in g_{-}$w.r.t B.
thin include η since $\eta=\gamma_{0}$
$\Rightarrow \quad \alpha+0=\alpha \neq 0 \quad g_{\alpha}$ is orthogenal to q_{0}

$$
\Rightarrow \quad B(x, z)=0 \quad \forall z \in q
$$

A contradiction... B is non-degenerate.
(f) B is non-dejenerite. \&

$$
B\left(\eta, \eta_{\alpha}\right)=0 \quad \forall \alpha \in \Delta
$$

$\left.\Rightarrow B\right|_{\eta}$ must be non-de generats
othurwise $\exists x \in \eta \quad B(x, z)=0 \quad \forall z \in \eta$
Then $\forall Y \in g \quad Y=z_{0}+\sum X_{\alpha}$

$$
B\left(x, z_{0}\right)+\left[B\left(x, x_{0}\right)=0 \quad \Rightarrow \quad x \in \operatorname{Rad}(B)\right.
$$

(2) Now. $\forall \alpha(H) \neq 0$-a linear functiond of η.

$$
\left.\begin{aligned}
& \quad \exists H_{\alpha} \epsilon \eta \\
& H=\sum h^{i} e_{i} \\
& \alpha(H)=\sum h^{i} \alpha_{i} \\
& \alpha_{i}=\alpha\left(e_{i}\right)
\end{aligned} \right\rvert\, \begin{aligned}
& B(H, H)=\alpha(H) \\
& H_{\alpha}=\sum y_{e_{i}}^{i},
\end{aligned} \quad y^{i} h^{j} B_{i j}=\alpha_{j} h^{j}
$$

suchasolution exists. It is also unizue!

$$
B\left(H_{\alpha}, H_{\beta}\right)=\alpha\left(H_{\beta}\right)=\beta\left(H_{\alpha}\right) \text {, if } \alpha, \beta \in \Delta \text {. }
$$

Thm 4.6 (a) $\left[x_{\alpha}, x_{-\alpha}\right]=B\left(x_{\alpha}, x_{-\alpha}\right) \cdot H_{\alpha}$
(b) $\quad B\left(H_{2}, H_{\alpha}\right) \neq 0$ $x_{-\alpha} \in 0_{-\alpha}$
(c) $\quad \operatorname{din} g_{\alpha}=1$

Pf: $B\left(\left[X_{\alpha}, X_{-\alpha}\right], H\right)=-B\left(\left[H, X_{-\alpha}\right], \quad X_{\alpha}\right)$
(a)

$$
\begin{aligned}
\operatorname{-ad}_{X_{-\alpha}}^{\prime \prime} X_{\alpha} & =--\alpha(H) B\left(X_{-\alpha} X_{\alpha}\right) \\
& =+B\left(H_{\alpha}, H\right) B\left(X_{-\alpha}, X_{\alpha}\right) \\
= & B\left(B\left(X_{-\alpha}, X_{\alpha}\right) H \alpha, H\right), \forall H \\
\Rightarrow \quad\left[X_{\alpha}, X_{-\alpha}\right]= & B\left(X_{-\alpha}, X_{\alpha}\right) H \alpha
\end{aligned}
$$ $x_{\alpha} \in \operatorname{Rad}(B)$

(Since $\left[x_{\alpha}, x_{-\alpha}\right] \in \eta$ by (b) of Thm 4.5)
$\& B$ is non-degenerate on (a) ${ }^{\prime}$].
For (b) We first need a claim. $x_{-\alpha}$ Byscaling we may choose ${ }^{X-\alpha} \quad B\left(X, X_{*}\right)=1$

Digression: two linear algebra results.
The A: If ge is a family of diagonclizable linear operators over V - a vector space. Then basis of V. everng $f \in \mathcal{H}$ is diagonal Hoff mon\&Kunge: LH this of P207.
The B. Every normal operator is dissinalizable. Hoffron-Kunbe Thornd. $\Leftrightarrow T T^{*}=T^{*} T$. P.317. Como

Clair: Given $\alpha \in \Delta, \exists \beta \in \Delta, B\left(H_{\alpha}, H_{\beta}\right) \neq 0$
The 4.5 (d) also works for $\eta \quad B\left(\left[H_{11} H_{0}^{\prime}\right], X_{\alpha}\right)=-B\left(H^{\prime} \alpha(H)\left(X_{\alpha}\right)\right)$
Hent if we pick H $\quad \alpha(H) \neq 0 \Rightarrow B\left(H_{1}^{\prime}, X_{\alpha}\right)=0 \quad-\alpha(H) \quad B\left(H^{\prime}, X_{\alpha}\right)$

$$
B\left(\eta, g_{\alpha}\right)=0 \quad B\left(g_{\alpha}, g_{\beta}\right)=0 \text { if } \alpha(H)+\beta(H) \neq 0 \text {. }
$$

Hence if $B\left(H_{\alpha}, H_{\beta}\right)=0 \quad \forall H_{\beta} \quad \beta \in \Delta \Rightarrow B\left(H_{\alpha}, \eta\right)=0$ which is Controdictan t. $\left.B\right|_{\eta}$ is non-degenerate.
$\exists X_{-\alpha} \in G_{-\alpha} \quad B\left(X_{\alpha}, X_{-\alpha}\right) \neq 0$ otherwise $B\left(X_{\alpha} Y\right)=0 \quad \forall Y \in G_{-\alpha}$ $\forall \beta \neq-\alpha$
$\Rightarrow B\left(x_{\alpha}, y\right)=0 \quad A$ contradiction!

Now if $B\left(H_{\alpha} H_{\beta}\right)=0 \quad \forall H_{\beta} \in A$

$$
\Rightarrow \quad B\left(H_{\alpha}, Z\right)=0 \forall z \in \eta \Rightarrow H_{\alpha}=0, A \text { contradiction! }
$$

Now in (6), we may choose $X_{-\alpha}$ Such that $B\left(X_{\alpha}, X_{-\alpha}\right)=1$ Consider the action of $\operatorname{ad} \mathbb{H}_{\alpha}$ on $S=\sum_{n \in Z_{K}} G{ }_{\beta}{ }_{\beta+n}$
Since $\quad H_{\alpha}=\left[x_{\alpha}, x_{\alpha}\right] \quad \Rightarrow$

$$
\operatorname{tr}\left(a \|\left._{H \alpha}\right|_{V}\right)=\operatorname{tr}\left(\left[a d x_{\alpha} \quad a d x_{\alpha}\right]\right)=0
$$

$$
\left[H_{\alpha} \quad g_{\gamma}\right]=\gamma\left(H_{\alpha}\right) g_{\gamma} \quad \forall g_{v}
$$

[Here we have used implicitly S is invariant under]

$$
\begin{aligned}
& \Rightarrow \operatorname{tr}\left(\bmod _{H_{r}}\right)=(\beta+n \alpha) \cdot\left(H_{\alpha}\right) \operatorname{din}\left(g_{\beta+n \alpha}\right) \\
& \Rightarrow \quad \underbrace{-\beta\left(H_{\alpha}\right)}_{0^{H}} \sum_{n} \underbrace{\operatorname{din}\left(g_{\beta+n \alpha}\right)}_{>0}=\alpha\left(H_{\alpha}\right) \sum_{n} n \operatorname{din}\left(g_{\beta+n \alpha}\right) \\
& \Rightarrow \alpha(H \alpha) \neq 0
\end{aligned}
$$

Namely $\quad B\left(H_{\alpha} . H_{\sim}\right) \neq 0$.
(c) Apply a similar argueinent to

$$
S=\mathbb{C} X_{-\alpha}+\mathbb{C} H_{\alpha}+\sum_{n \geqslant 1} Y_{n \alpha}
$$

$\mathrm{ad}_{\mathrm{H}_{\alpha}}$ invariant

$$
\operatorname{ad} x_{\beta}\left(q_{\gamma}\right) \in q_{\beta+\gamma}
$$

ad X_{α} inveriont
$k_{\operatorname{ca} d_{x-\alpha}}$ invariant.
Apply the computation of $\left.\quad \operatorname{tr}\left(a d_{H_{\alpha}}\right)_{s}\right)$.

$$
\Rightarrow \quad \operatorname{ad}_{H_{\alpha}}\left(X_{-\alpha}\right)=(-\alpha)\left(H_{\alpha}\right) X_{-\alpha}
$$

$$
\begin{aligned}
& \quad a d_{H_{\alpha}}\left(H_{\alpha}\right)=0 \\
& \left.\quad a d_{H_{\alpha}}\right|_{g_{n-}}=n \alpha\left(H_{\alpha}\right) i d . \\
& \Rightarrow 0=-B\left(H_{\alpha}, H_{\alpha}\right)+B\left(H_{\alpha} H_{0}\right) \sum_{n \geq 1} n \operatorname{dim}\left(-g_{n \alpha}\right)
\end{aligned}
$$

Hence

$$
\left.0=-1+\sum_{n \geqslant 1} n \operatorname{dim} 1 g_{n o}\right)
$$

$\Rightarrow \quad \operatorname{di}\left(g_{n}\right)=1 \quad \& \quad \operatorname{dim}\left(q_{n \times}\right)=0 \quad \forall n \geqslant 2$.
(3) Remarks:
a: $G \longrightarrow \operatorname{Ant}(G) \quad a_{g}$ or ass $): h \rightarrow \mathrm{ghg}^{-1}$
Ad: $G \longrightarrow$ Ant $/(g)$

$$
A d_{g}=d a_{g}
$$

$$
\left.x \rightarrow \frac{d}{d t}\left(\operatorname{Sererp}_{t=0}(t)\right)^{-1}\right)
$$

ad: $g \longrightarrow \operatorname{End}(g)$

$$
a d_{x}: \left.=d(A d) \quad \operatorname{ad}_{x}(Y)=\frac{d}{d t} \right\rvert\, A d d_{t=0}(Y)
$$

$$
\varphi(\exp (t x))=\exp (t d y(x))
$$

Es
If $\left[\begin{array}{ll}X & Y\end{array}\right]=0 \quad \operatorname{expt} X \exp (s Y) \exp (-t X)=\exp (s Y)$.

$$
\begin{aligned}
& L H S=a \exp (t x) \\
& \operatorname{Ad}(Y)=e^{\exp (t x)} \underset{\exp (x)}{ }(Y)=\left(\begin{array}{cc}
s & A d^{\exp (t x)}(Y)
\end{array}\right)
\end{aligned}
$$

Hence LHS $=\exp (S Y)$.

Namely in order to understant the group structure of ϵ we reduce it to understand $z \quad a d_{x}: q \rightarrow g$ linear maps. which is the $2 n d$ derivation of the group structure to some degree.

Al: $G \rightarrow G L(n g)$
ad: $y \rightarrow$ gl $\left(\begin{array}{ll}\mathrm{n} & \mathrm{g})\end{array}\right.$.
ad is a faithful representation if $\quad \exists(s)=\{0\}$
Namely if $\quad c d_{x}=0 \Rightarrow x=0$.
介

$$
[X, Y]=\cup \forall Y
$$

This proves $g \approx \operatorname{ad}(g) \subset G l(n . \mathbb{C})$. Namely the Ads's theorem for this special case.

What is a root? "quantum eigenvalue" $\exists\left\{x_{i}\right\} \quad \forall H \in I \quad G d_{H}$ is diagonal.
namely

$$
G d_{H}\left(X_{i}\right)=\lambda_{i}(H) X_{i}
$$

It canbechecked. $\quad \lambda_{i}$ is linear. Hence $\lambda_{i} \in Y^{*}$
Such an $\lambda_{i}(H)$ is called a root.
$\lambda_{i}(H)$ Solves $\quad \operatorname{det}\left(a d_{H}-\lambda i d\right)=0$.
root space $g_{\alpha}=\left\{x\left(a d_{H}(x)=\alpha(H) x\right\}\right.$. Namely the eigenspaces for the eigenvalue α.

